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Monaco 
A program to answer probability questions, especially from dice and card games. 

A Tutorial 

Introduction 
When playing games that include chance, usually using dice or cards, questions often arise 
of the forms: 

• How likely is that event?	
• What is the average value of that result?	
• What is the distribution of that result?	

This is a short tutorial that is intended to enable you to start using a program called Monaco 
that can be used to answer questions such as these that can arise in a wide range of games. 

Getting Started 
This document describes how to get started using the program to answer some questions of 
those sorts. The examples given are mainly to solve problems that can arise in real games. 
You should try out each example solution, and maybe try modifying it to see how to extend or 
improve it. By the time you have finished, you should be able to solve a lot of real problems. 
Before you can start, you need to get two things out of the way: 

• You need an executable version of the program. Maybe you were given it, or maybe 
you had to build it. This tutorial will assume that you have handled that, and that the 
default compilation option was used, so that integers are 64 bit numbers. 

• Monaco is a command line program. This tutorial assumes you know what that means 
and how to run such a program. In this tutorial it is assumed that you use monaco to 
run the program. You should make whatever changes you need to make to that and 
other parameters, such as whether they need to be put in quotes or otherwise modified. 

Exact and Approximate Answers 
There are two ways to run the program: 

• To get exact answers. These are better, so most of this tutorial is about them. 
• To get approximate answers. These are sometimes needed, see near the end of this 

tutorial for some reasons why, with examples. 

Dice and Cards 
There are two main sorts of problems that the program can handle: 

• Problems using dice. 
• Problems using cards. 

Dice are easier to handle than cards, so this tutorial starts with dice problems. 

Program Parameters 
For exact answers, following monaco we need two kinds of program parameters, in this order: 

• One or more parameters called options. These start with a – sign. For exact answers 
include the option -exact or -e. Other options control the program’s output. 

• A single parameter called the expression. 
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Output Parameters 
The main output options correspond to the three questions that started this tutorial: 

• How likely is that event? Use -probability -statistics or -p -s.	

• What is the average value of that result? Use -statistics or -s.	

• What is the distribution of that result? Use -all or -a but we may not need all of this 
output, which includes the -statistics output. Later we will see alternatives to this.	

The Expression 
The expression sets up the game situation and also extracts the information we want from it. 
To do this, the expression can be evaluated to produce a result that we are interested in. This 
represents a random process that can have a different result each time. When answers are 
approximate, each result is random; when answers are exact all possible results are created. 
For the first question the result must be true or false and we want to know how often it is true. 
For the other questions the result is what we want the average value of or the distribution of. 

First Problem: Totalling Dice 
We start with the problem of rolling three standard dice, with faces numbered from 1 to 6, and 
adding them up. We use -all to give us both the average value and the distribution. 

The expression we will use is sum(sorted3d6). It is explained below, after showing its use. 

We can now run the program using the command line: 

monaco -exact -all sum(sorted3d6) 

First Problem – Average Output 
The output from -all is in four parts, separated by blank lines. 

First we get the -statistics output that gives us the average. For this example this is: 

Number of evaluations      = 56 
Number of results          = 216 
Mean                       = 10.5 = 21/2 
Standard deviation         = 2.95804 
Minimum result             = 3 
Maximum result             = 18 

The average, or (arithmetic) mean is on the third line. It is 10.5, or as a fraction 21/2. For this 
simple example we can work that out without using the program and thus we can verify it. 
The first two lines are explained after explaining sum(sorted3d6). The last two lines should 
be clear. The standard deviation is considered later when describing approximate answers. 

First Problem – Distribution Output 
The second piece of output from -all gives us the distribution of the results: 

 3 -  1 ~ 0.00462963 =  1/216 
 4 -  3 ~ 0.0138889  =  1/72 
 5 -  6 ~ 0.0277778  =  1/36 
 6 - 10 ~ 0.0462963  =  5/108 
 7 - 15 ~ 0.0694444  =  5/72 
 8 - 21 ~ 0.0972222  =  7/72 
 9 - 25 ~ 0.115741   = 25/216 
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10 - 27 ~ 0.125      =  1/8 
11 - 27 ~ 0.125      =  1/8 
12 - 25 ~ 0.115741   = 25/216 
13 - 21 ~ 0.0972222  =  7/72 
14 - 15 ~ 0.0694444  =  5/72 
15 - 10 ~ 0.0462963  =  5/108 
16 -  6 ~ 0.0277778  =  1/36 
17 -  3 ~ 0.0138889  =  1/72 
18 -  1 ~ 0.00462963 =  1/216 

To understand this output, consider the row that starts 8. It says that the probability of a result 
of 8, exactly, is 7/72 or 0.0972222 (to six significant figures). Probabilities are in the range 
from 0 (never) to 1 (always). As a percentage that is (multiplying by 100) 9.72222%. There is 
a way to make the program report percentages rather than probabilities; this is described later. 
If we want the probability of a result of e.g. 8 or less, the third piece of output gives us that: 

<=  3 -   1 ~ 0.00462963 =   1/216 
<=  4 -   4 ~ 0.0185185  =   1/54 
<=  5 -  10 ~ 0.0462963  =   5/108 
<=  6 -  20 ~ 0.0925926  =   5/54 
<=  7 -  35 ~ 0.162037   =  35/216 
<=  8 -  56 ~ 0.259259   =   7/27 
<=  9 -  81 ~ 0.375      =   3/8 
<= 10 - 108 ~ 0.5        =   1/2 
<= 11 - 135 ~ 0.625      =   5/8 
<= 12 - 160 ~ 0.740741   =  20/27 
<= 13 - 181 ~ 0.837963   = 181/216 
<= 14 - 196 ~ 0.907407   =  49/54 
<= 15 - 206 ~ 0.953704   = 103/108 
<= 16 - 212 ~ 0.981481   =  53/54 
<= 17 - 215 ~ 0.99537    = 215/216 
<= 18 - 216 ~ 1 

The line starting <= 8 tells us that the probability of a result of 8 or less is 7/27 or 0.259259. 

The final output reports probabilities such as of a result of 15 or more (5/54 or 0.0925926): 

>=  3 - 216 ~ 1 
>=  4 - 215 ~ 0.99537    = 215/216 
>=  5 - 212 ~ 0.981481   =  53/54 
>=  6 - 206 ~ 0.953704   = 103/108 
>=  7 - 196 ~ 0.907407   =  49/54 
>=  8 - 181 ~ 0.837963   = 181/216 
>=  9 - 160 ~ 0.740741   =  20/27 
>= 10 - 135 ~ 0.625      =   5/8 
>= 11 - 108 ~ 0.5        =   1/2 
>= 12 -  81 ~ 0.375      =   3/8 
>= 13 -  56 ~ 0.259259   =   7/27 
>= 14 -  35 ~ 0.162037   =  35/216 
>= 15 -  20 ~ 0.0925926  =   5/54 
>= 16 -  10 ~ 0.0462963  =   5/108 
>= 17 -   4 ~ 0.0185185  =   1/54 
>= 18 -   1 ~ 0.00462963 =   1/216 

For separate outputs use -histogram (-h), -cumulative (-c) and -rcumulative (-r). 
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First Problem – The Expression 
The expression sum(sorted3d6) produces a result, a number that in this case is from 3 to 
18. Numbers, including results, are all integers, or whole numbers. These results are all 
greater than zero, but we can have numbers, including results, that are zero or less than zero. 
Every expression result is a single number. But within an expression we can also use lists that 
each contain one or more numbers. Lists have the following properties: 

• They are ordered. That means that the list containing 2 then 3 then 6 is a different list 
to the list containing 3 then 6 then 2. We can write those two lists as {2,3,6} and 
{3,6,2}. The numbers in a list are called its elements; we number them from zero. 

• They each have a fixed length. For example, the list {2,3,6} has a length of 3. 

sum(sorted3d6) is made up of two parts: sum and sorted3d6. We consider it from the 
inside, sorted3d6, to the outside, sum. Later examples are also considered from left to right. 

sorted3d6 is a list containing the rolls of 3 standard dice, each with 6 sides. We could create 
all possible lists of these dice rolls, 6×6×6 = 216 of them. But when we total dice rolls we do 
not care which die is which; lists of the same dice rolls in different orders, such as {2,3,6}, 
{3,6,2}, and four others, would have the same total. So instead we only create one of those 
lists; we choose the one sorted in order, i.e. {2,3,6}. There are 56 such sorted lists, in sets 
of 6, 3 and 1. We now have two numbers: the number of possible lists, 216, and the number 
of lists we are considering, 56. Those are the numbers in the first two lines of the first output. 
The 56 lists are not equally likely, but the program handles that for us. The time that is needed 
depends on the 56, not the 216, a saving by a factor of about 4; factors can be much bigger. 
sum is a function, one that converts a list to a number, in this case by adding up its elements. 
We use it by following its name with its argument, the list sorted3d6, in parentheses (). 

Second Problem: Dungeons and Dragons 
The sum of 3 standard dice was the original way to create a characteristic playing the game 
Dungeons and Dragons (D&D). Players wanted better characters, and so other ways to create 
a characteristic were devised. One now standard way is to roll 4 dice and total the 3 largest. 
We start with a list of 4 dice sorted4d6. We can always change numbers in terms like that if 
it makes sense and they are not too large. Because that list is sorted, the 3 dice values we 
want are its last 3 elements. We use a new kind of function, one that converts a list to another 
list, called tail3. There is a head3 for the first 3 elements, and other lengths in each case. 

Our 3 dice are now tail3(sorted4d6) and their total is sum(tail3(sorted4d6)). 

To save space here we just look at the -statistics output for this expression, which is: 

Number of evaluations      = 126 
Number of results          = 1296 
Mean                       = 12.2446 = 15869/1296 
Standard deviation         = 2.84684 
Minimum result             = 3 
Maximum result             = 18 

The average value of a characteristic has gone up from 10.5 to 12.2446. 

Third Problem: Yspahan and Corinth 
In the games Yspahan and its derivative Corinth, players usually roll 9 standard dice, as 
sorted9d6. Because of how those dice are used, we might want to know statistics about 
how many different values are rolled and about the greatest number of the same value rolled. 
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How many different numbers were rolled is given by the function count_diff. To save space 
and to give an example of the “how likely” question, we just ask how likely are we to see all 6 
numbers. We can do this with count_diff(sorted9d6)==6. Using == to test “is equal to” 
is used in several computer languages. We use the options -probability -statistics. 

The output in this case, reporting the probability of seeing all six numbers as 0.189043, is: 

Number of evaluations      = 2002 
Number of results          = 10077696 
Number of false results    = 8172576 
Number of true results     = 1905120 
Probability                = 0.189043 = 245/1296 

In each game a player sometimes rolls 12 dice instead of 9. To show that and also something 
new, you may prefer percentages to probabilities. For this we add the option -percent or -%. 
Doing that, and changing 9 to 12, gives us the following output and a probability of 43.7816%: 

Number of evaluations      = 6188 
Number of results          = 2176782336 
Number of false results    = 1223752896 
Number of true results     = 953029440 
Probability                = 43.7816% = 1654565/3779136 

The difference between 6188 and 2176782336 (the work we would need without sorting dice) 
is the difference between minutes and milliseconds in how long the program takes to run. 
We can also get percentages in distribution output. We show that while answering our second 
question, how many of the most common die value did we roll? There is a function for that, 
count_mode, and hence for 9 dice we use count_mode(sorted9d6). To save space, here 
is just the second output from -all (i.e. from -histogram), which with -percent is now: 

2 - 1587600 ~ 15.7536%     =  1225/7776 
3 - 5628000 ~ 55.8461%     = 58625/104976 
4 - 2320920 ~ 23.0303%     = 10745/46656 
5 -  472500 ~  4.68857%    =  4375/93312 
6 -   63000 ~  0.625143%   =   875/139968 
7 -    5400 ~  0.0535837%  =    25/46656 
8 -     270 ~  0.00267918% =     5/186624 
9 -       6 ~ 5.95374e-05% =     1/1679616 

Fourth Problem: Dice Combinations 
In several games a player rolls five standard dice, in this problem just rolling once. We then 
look for combinations such as long straight, {1,2,3,4,5} or {2,3,4,5,6}, short straight, four dice 
are {1,2,3,4}, {2,3,4,5} or {3,4,5,6}, and full house, three of one value and two of another value. 
We can check for a long straight by comparing the dice rolled, sorted5d6, with the two 
possible lists. That needs some new features. To check for the list {1,2,3,4,5} we use a new 
function as list_eq(sorted5d6,{1,2,3,4,5}); do not use == here. list_eq is a new 
kind of function, it has two arguments, separated by a comma. We could then check the other 
list, and then try to combine the tests using the logical or operator |, more on which later. 

But writing this the obvious way does not work because it would use sorted5d6 twice, and 
each such use creates a different list. We need to compare the same list in each case. We do 
that by storing the list in a variable and then comparing that variable with each straight, as: 

v0:=sorted5d6;list_eq(v0,{1,2,3,4,5})|list_eq(v0,{2,3,4,5,6}) 
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Additional new things here, as well as the | operator, are: 

• The variable v0, which we set to the list of dice with v0:=sorted5d6 and use as v0. 

• We sequence setting v0 and then testing v0 with ; which means do this, then do that, 
left to right. The result of the sequence is the result of what comes after the ;. 

The -probability -statistics output to test the likelihood of a long straight is then: 

Number of evaluations      = 252 
Number of results          = 7776 
Number of false results    = 7536 
Number of true results     = 240 
Probability                = 0.0308642 = 5/162 

There is more about variables later. But we can also solve this problem without them. To do 
that we can use a function runs that is one of several that can analyse a list. runs creates a 
list of the same length that tells us how many runs of length 1, 2, … are found in the list that it 
analyses. Runs are not counted if they are part of a longer run, but all possible runs are 
counted, even when they overlap. Thus, for example, runs({2,3,3,4,6})is {1,0,2,0,0}. 

So to check for a long straight we could use list_eq(runs(sorted5d6),{0,0,0,0,1}). 
However, we only need to check the last element of the resulting list, using the function last, 
as last(runs(sorted5d6))==1. There is also a function first for the first element. 

The output is, as we would expect, exactly as the previous output. 
For a short, but not long, straight, we must make two changes. First, we want the penultimate 
element of the result of runs. This is get(3,runs(sorted5d6)). get is a function that 
gets an element by number. Although this is for length 4, list elements are numbered from 0, 
hence the 3. Second, it is possible to have two short straights, e.g. in {2,3,3,4,5}, so we replace 
==1 by !=0, where != means not equal to. We could also use !=0 testing for a long straight. 

This is a new result, with corresponding -probability -statistics output: 

Number of evaluations      = 252 
Number of results          = 7776 
Number of false results    = 6816 
Number of true results     = 960 
Probability                = 0.123457 = 10/81 

For a full house, we have a function groups that is a companion to runs. It counts how many 
singletons, doubletons etc. are in a list. For example, groups({2,3,3,3,5}) is {2,0,1,0,0}. 
We can thus check for a full house using list_eq(groups(sorted5d6),{0,1,1,0,0}). 

The corresponding -probability -statistics output in this case is: 

Number of evaluations      = 252 
Number of results          = 7776 
Number of false results    = 7476 
Number of true results     = 300 
Probability                = 0.0385802 = 25/648 

Functions 
Functions, plus operators described in the next section, are how to manipulate lists and 
numbers. The functions we have so far (we do not consider sorted3d6 to be a function) are: 

• sum, which adds up the elements of a list to give a number. 



Page 7 of 16 
 

• count_diff, which counts how many different values there are in a list. 

• count_mode, which counts how many of the most common value there is in a list. 

• first and last, which extract the first or last element from a list. 

• get, which extracts a single element from a list. Specifically, get(n,list) extracts 
element number n, counting from zero, from list. Here and in later examples, n (and 
later m) is anything that results in a number, and list is anything that results in a list. 

• head£ and tail£, where £ – only used in this tutorial, not by the program – is replaced 
by a number greater than zero, e.g. head4 or tail3. These functions convert a list of 
any length greater than £ to length £ by taking the first or last £ elements of that list. 

• list_eq, which is true if two lists are the same, false if they are not. There is also a 
function list_ne that is the opposite of that, true if two lists are not equal. 

• groups, which determines the numbers of groups of equal elements of sizes 1, 2, … 
in a list, as a list with the same length. 

• runs, which determines the numbers of runs of lengths 1, 2, … in a list, as a list. 

There are many more functions. Here are some of the most useful ones: 
• min and max extract the minimum and maximum element from a list. So 

min({2,3,3,4,4,6}) is 2 and max({2,3,3,4,4,6}) is 6. 

• mode_min and mode_max extract the most common number among the elements of 
a list. If there is more than one most common number, mode_min is the smallest such 
number and mode_max is the largest such number. So mode_min({2,3,3,4,4,6}) 
is 3 and mode_max({2,3,3,4,4,6}) is 4. 

• same and different determine whether the elements of a list are all the same or all 
different. So same({1,1,1,1}) and different({2,3,5,6}) are both true, but 
same({2,3,3,5}) and different({2,3,3,5}) are both false. 

• count_eq(list,n) is the number of elements of list that are equal to n. So 
count_eq({2,3,3,5,6},3) is 2. There are also functions count_ne, count_lt, 
count_le, count_gt and count_ge that count the numbers of elements in a list 
that are not equal to, less than, less than or equal to, greater than, and greater than or 
equal to, a number, respectively. For example, count_gt({2,3,3,5,6},3) is 2 
and count_ge({2,3,3,5,6},3)is 4. 

• sort(list) is list sorted in ascending order. So sort({2,5,3,1}) is {1,2,3,5}. 
rsort(list) is list sorted in descending order. So rsort({2,5,3,1}) is {5,3,2,1}. 

• reverse(list) is list reversed in order. So reverse({2,5,3,1}) is {1,3,5,2}. 

• lower and upper take the element by element minimum and maximum of two lists, 
which must have the same length. So lower({1,2,4,5},{2,3,3,5}) is {1,2,3,5} 
and upper({1,2,4,5},{2,3,3,5}) is {2,3,4,5}. 

• counts(list) is a list that replaces each element of list by how many times that number 
appears in list. So counts({2,3,3,3,5,5}) is {1,3,3,3,2,2}. 

Operators 
Operators are like functions but are written using symbols. There are binary operators that 
can combine two numbers or two lists, before and after the symbol, and unary operators that 
apply to one following number or list. These numbers and lists are called the operands. The 
result is also a number or a list. All lists, operands and the result, must have the same length. 
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The most useful binary operators for numbers are: 
• The arithmetic operators + (addition), - (subtraction), * (multiplication), / (division) and 

% (modulus or remainder). / rounds towards zero; the result of % is always ≥ 0. 

• The comparison operators == (equal to), != (not equal to), < (less than), <= (less than 
or equal to), > (greater than) and >= (greater than or equal to). The result is true or 
false – represented by the numbers zero and one – as appropriate. 

• The logical operators & (and), ^ (exclusive or) and | (inclusive or). & and | only 
evaluate the second operand if needed, if the first operand is true or false, respectively. 

The two most useful unary operators for numbers, one arithmetic, one logical, are: 
• Negative -. The effect of subtracting a number from zero. 

• Not !. Turns all non-zero numbers to false (0) and turns zero to true (1). 

For lists, we usually only need the arithmetic operators, working element by element. For 
example, {1,2,2,4}+{2,3,4,5} is {3,5,6,9}. We can combine a list and a number; the 
number is combined with each element of the list. For example, {1,2,2,4}+2 is {3,4,4,6}. 

Binary operator precedence – what is combined with what first – is as usual in computing, i.e. 
in the bullet order above. Not all operators under one bullet have the same precedence, in 
particular * / % are above + -. Within other bullets, or if in any doubt, use parentheses (). 

Variables 
We used the variable v0 to store a list. There are also list variables v1 to v9, but no further. 
Each list variable has a fixed length. For example, if v0 has stored a list of length 4 it cannot 
later store a list of length 3. That v0 can be used in, for example, v0+{2,3,3,4} or v0*2. 

There are also variables r0 to r9 that store numbers. We set them similarly using :=. 

An assignment such as r0:=r0+2 can be written as r0+=2. This works for binary arithmetic 
and logical operators, but not for comparison operators. We can also do this for list operators. 
Before each evaluation of the expression, all used variables are set to either 0 or a list of 0s. 

More Dice 
A single die can be e.g. d6. For example, to set r0 to the value of a 10-sided die use r0:=d10. 

Some non-standard dice can be created by arithmetic. For example, d3-2 can be used for a 
die with faces -1, 0 and 1. For a list of 4 such dice use sorted4d3-2. Some dice have face 
values that are not a sequence. We can put those values in a list such as {2,3,3,4,4,5} 
and use e.g. selection_list3from[{2,3,3,4,4,5}] to produce a sorted list of 3 such 
dice values and sum(selection_list3from[{2,3,3,4,4,5}]) to sum those values. 
What is in the [], in this and similar terms, must be constant, i.e. use no dice or variables. 

An example from the game Onward to Venus replaces the 1 on a d6 with a 0, rolls 3 such dice 
and subtracts the minimum rolled value from the maximum rolled value. This can use: 

v0:=selection_list3from[{0,2,3,4,5,6}];last(v0)-first(v0) 

Note that we can use first and last because v0 is sorted. The -statistics output is: 

Number of evaluations      = 56 
Number of results          = 216 
Mean                       = 3.33333 = 10/3 
Standard deviation         = 1.63299 
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Minimum result             = 0 
Maximum result             = 6 

Cards 
A standard deck (or pack) of 52 cards uses 4 named suits and 13 named and numbered ranks, 
each combination once. But for this program we have to use just numbers. We can number 
the cards 0 to 51, with suits numbered 0 to 3 and ranks numbered 0 to 12. We let cards 0 to 
3 be rank 0, cards 4 to 7 be rank 1 and so on, with each group of four in the same suit order. 
There is a term sequence52 that is a list of the numbers from 0 to 51 in that order; it can 
represent a standard deck. Now if we have some cards – the full deck or a smaller hand – in 
list then we can convert list to ranks using list/4, and we can convert list to suits using list%4. 

Fifth Problem: Poker Hands 
We consider the problem of drawing a 5 card poker hand from a standard deck and evaluating 
it, which we here limit to testing whether it is a full house or a flush – all cards of the same suit. 
We do not care what order we draw the cards in, so like dice we can make that more efficient. 
Our 5 card hand is the list combine5from[sequence52]. There are 2598960 ways to draw 
that hand, which we can handle. However, we might find drawing more cards too slow to use. 
Converting to ranks and using what we have done before, we could write the expression: 

list_eq(groups(combine5from[sequence52]/4),{0,1,1,0,0}) 

This has the -probability -statistics: output: 

Number of evaluations      = 2598960 
Number of results          = 2598960 
Number of false results    = 2595216 
Number of true results     = 3744 
Probability                = 0.00144058 = 6/4165 

However, this is inefficient. We should convert the cards to ranks before taking our hand, as: 

list_eq(groups(combine5from[sequence52/4]),{0,1,1,0,0}) 

Now our -probability -statistics output, showing a greatly reduced workload, is: 

Number of evaluations      = 6175 
Number of results          = 2598960 
Number of false results    = 2595216 
Number of true results     = 3744 
Probability                = 0.00144058 = 6/4165 

Testing for a flush can use same(combine5from[sequence52%4]), with the output: 

Number of evaluations      = 56 
Number of results          = 2598960 
Number of false results    = 2593812 
Number of true results     = 5148 
Probability                = 0.00198079 = 33/16660 

However, to fully use both suits and ranks from the same hand we need the full 2598960 
cases. We would usually start an expression that does this by assigning the hand to a list 
variable as, for example, by v0:=combine5from[sequence52], and then using v0. 
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Sixth Problem: Bridge Hands 
A bridge hand has 13 cards. If we care about ranks and suits, e.g. to try to fully assess the 
value of a hand, we would need to handle 635013559600 cases. We cannot do that exactly. 
Instead, here we count the maximum number of cards in any suit using the expression 
count_mode(combine13from[sequence52%4]). We use -table or -t, an alternative 
to the second to fourth outputs from -all, as shown. Add -statistics for the first output. 

 N     P(N)       P(<=N)     P(>=N) 
 4  0.350805     0.350805  1 
 5  0.443397     0.794202  0.649195 
 6  0.165477     0.959679  0.205798 
 7  0.0352664    0.994945  0.0403213 
 8  0.00466761   0.999613  0.00505489 
 9  0.000370445  0.999983  0.000387277 
10  1.64642e-05  1         1.68315e-05 
11  3.64074e-07  1         3.67274e-07 
12  3.19363e-09  1         3.19993e-09 
13  6.29908e-12  1         6.29908e-12 

Additional Lists 
So far, we have used random lists such as sorted3d6, lists such as sequence52, and lists 
such as {2,3,5,7}; we can also use non-constant lists such as {2,d6,r0+1}. We can use, 
for example, [r0+1][3] for the list {r0+1,r0+1,r0+1}. If we use [d6][3] then the d6 is 
only rolled once and is used for all 3 elements. We cannot use [3][r0+1], because it does 
not have a fixed length. We can join lists using #, so that {2,3}#[4][3] is {2,3,4,4,4}. # is 
the highest precedence binary list operator; its operands can have different lengths, as here. 

Loops 
Expressions now look like a simple programming language. But so far they are missing the 
key programming ability of being able to do something more than once, in other words, a loop. 
Loops in expressions are possible. They are implemented using functions. But these are not 
true mathematical functions, they evaluate their arguments more than once, using each value. 
We consider two loops. The first is a constant loop, the number of times it is used is known 
beforehand. The second is a variable loop, the number of times it is used is not so known. 

Constant Loop 
One use of a constant loop is to do something for each element of a list. As an example, we 
assume function max does not exist and implement it. For simplicity, unlike max, we here 
assume no elements of list are less than zero, so use the zero initial value of r0, the maximum. 

The loop used here is rloop1(size(list),r2:=get(r1,list);r2>r0&(r0:=r2)). 

The function rloop1 (one of ten, rloop0 to rloop9) loops r1, the 1 matching rloop1, as 
0, 1, … some n - 1. rloop1 has two comma-separated arguments: size(list), the number 
of elements in list, is n, how many times we loop, and r2:=get(r1,list);r2>r0&(r0:=r2), 
is what we do that many times. Note that as shown we can sequence terms with a ; anywhere. 

Now suppose that, for example, size(list) is 3. What now happens is the sequence: 

r1:=0 
r2:=get(r1,list);r2>r0&(r0:=r2) 
r1:=1 
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r2:=get(r1,list);r2>r0&(r0:=r2) 
r1:=2 
r2:=get(r1,list);r2>r0&(r0:=r2) 
r1:=3 

r1 is the number of each element of list, so r2:=get(r1,list) is equal to each element of 
list. We then check if r2 is greater than the maximum so far r0 using r2>r0 and only update 
r0 if this is true. We need parentheses because all assignments have precedence below &. 

We finish the expression with ;r0 because r0 is the required answer. Sequencing rules mean 
that what is before a ; must be the same type (number or list) or must be an assignment. 
rloop1(n,m) is a number, the last result of m, but followed by ;r0 that number is not used. 

To only calculate list once we need to put it in a variable as usual. We use v0, thus giving us: 

v0:=list;rloop1(size(v0),r2:=get(r1,v0);r2>r0&(r0:=r2));r0 

We can simplify that. There is a notation s0 for size(v0), and similarly for v1 etc. There is 
a notation e01 for get(r1,v0) and similarly for the other 99 possible cases. That gives us: 

v0:=list;rloop1(s0,r2:=e01;r2>r0&(r0:=r2));r0 

and, even better, we can now get rid of r2 as: 

v0:=list;rloop1(s0,e01>r0&(r0:=e01));r0 

Yet better still, but not needed in this tutorial, is that we can assign to e01, e.g. use e01:=… 
for some … and change one element of v0. We can even use assignments like e01+=… 

In our expression, let list be sorted3d6. The distribution, the second output from -all, is: 

1 -  1 ~ 0.00462963 =  1/216 
2 -  7 ~ 0.0324074  =  7/216 
3 - 19 ~ 0.087963   = 19/216 
4 - 37 ~ 0.171296   = 37/216 
5 - 61 ~ 0.282407   = 61/216 
6 - 91 ~ 0.421296   = 91/216 

This is the same output as using the expression max(sorted3d6) or last(sorted3d6). 

Variable Loop 
The most basic variable loop function is while. while(n,m)is equivalent to: 

(a) Set k to 0. (k is a temporary variable that is just used to explain this loop.) 
(b) Evaluate n; if it is false then finish with result k, otherwise continue. 
(c) Evaluate m and set k to its value. 
(d) Go back to (b). 

We now use this function, together with some other new features, to solve the next problem. 

Seventh Problem: A Race Game 
To demonstrate a variable loop and other new features, we use a simple race game. Players 
0 and 1 race down a track with a finish line after 10 spaces. Every turn each rolls a die with 
faces 2, 3 and 4, i.e. a d3+1, and moves that far, at the same time. The game ends when 
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either or both of them have crossed the line. A player’s score is how many spaces travelled 
minus how many spaces the other player travelled. Both count spaces beyond 10 if reached. 
We let player 0 have moved r0 spaces, and player 1 have moved r1 spaces. Here is an 
expression that looks like it should work to give player 0’s score: 

while(r0<10&r1<10,r0+=d3+1;r1+=d3+1);r0-r1 

But using -exact that expression does not work, with the error message: 

Error: Function while cannot be used that way in exact mode. 

This is because exact results depend on there being known amounts of randomness, which 
is not so here. One solution is switching to approximate results. But in this case there is an 
exact solution possible because there is a maximum amount of randomness. So we act as if 
we pre-roll all the dice we might possibly want and put those in a pool. We then take all of our 
dice from the pool. The program efficiently handles any remaining unused dice in the pool. 
In this game the maximum number of turns possible is 5, so the maximum number of dice 
needed is 5 each, a total of 10 d3s. We put those 10 dice in the pool with pool_nset10of3. 
When using the pool we replace the use of d3 by pool_d(3) and our expression becomes: 

pool_nset10of3;while(r0<10&r1<10,r0+=pool_d(3)+1;r1+=pool_d(3)+1);r0-r1 

We can run this expression with the options -exact -all to produce the first output: 

Number of evaluations      = 3241 
Number of results          = 59049 
Mean                       = 0 
Standard deviation         = 2.12924 
Minimum result             = -6 
Maximum result             = 6 

and the second output – the third and fourth outputs are not reported here – of the distribution: 

-6 -   81 ~ 0.00137174 =    1/729 
-5 -  549 ~ 0.00929736 =   61/6561 
-4 - 2070 ~ 0.0350556  =  230/6561 
-3 - 4729 ~ 0.080086   = 4729/59049 
-2 - 7972 ~ 0.135007   = 7972/59049 
-1 - 9644 ~ 0.163322   = 9644/59049 
 0 - 8959 ~ 0.151721   = 8959/59049 
 1 - 9644 ~ 0.163322   = 9644/59049 
 2 - 7972 ~ 0.135007   = 7972/59049 
 3 - 4729 ~ 0.080086   = 4729/59049 
 4 - 2070 ~ 0.0350556  =  230/6561 
 5 -  549 ~ 0.00929736 =   61/6561 
 6 -   81 ~ 0.00137174 =    1/729 

We can use mixed dice in a problem, in any order, by using more than one pool_nset term. 

Eighth Problem: Conditional Probabilities 
Sometimes we might be interested in a problem such as what is the distribution of our D&D 
characteristics (roll four standard dice and sum the three largest) but where we reroll if none 
of our dice is a 6. To do this exactly we only roll the dice once, but we discard any rolls without 
a 6. In this way we are using conditional probabilities; these are conditional on at least one 6. 
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We can do this with v0:=tail3(sorted4d6);conditional(last(v0)==6,sum(v0)). 
Here we only need to check the last die in v0 because it is sorted, and that being a 6 is our 
condition. If that condition is true then we use sum(v0) as our result, otherwise we have no 
result. To save space, here we just show the -statistics output, but you would usually 
produce the -all or -table output. The 56 tells us that is how many of the 126 different dice 
patterns had a 6 in them, and the 671 tells us how many of the possible 1296 results (a number 
that is not reported here) had a 6 in them. The mean has gone up to 13.9314 (from 12.2446). 

Number of evaluations      = 126 
No. of weight > 0 evals    = 56 
Number of results          = 671 
Mean                       = 13.9314 = 9348/671 
Standard deviation         = 2.12811 
Minimum result             = 8 
Maximum result             = 18 

Approximate Results 
We now consider approximate results. These are produced by what is called Monte Carlo 
simulation (hence the program name). We evaluate the expression using actual random 
numbers many times, in examples here ten million times. The program estimates probabilities, 
average values and distributions by counting results and performing the required arithmetic. 
An important question is how good are these estimates? They obviously get better as the 
number of results increases. But, for probabilities and distributions, they also get worse if the 
event they are looking at gets less likely. To use the program properly we should have a 
realistic assessment as to how accurate our estimates are. 
Here I suggest that we do this by quoting results to a reasonable number of significant figures. 
So if we say that the average is 10.5, then ideally we would believe that all three digits are 
correct. We cannot actually do this, there is always some uncertainty left. So instead we say 
that the average is “about 10.5”, meaning that we think it is probably 10.5 to three figures. 
However, it might be 10.4 or 10.6, or even further from 10.5, but that gets increasingly unlikely 
as we get further from 10.5. We do not do that with full rigour, but we do it reasonably well. 
First, we need to know how to produce approximate results. We start with a known case, the 
sum of three standard dice. I recommend that you use, in examples here for ten million results: 

monaco -new -all sum(sorted3d6) 10000000 

Here -new or -y replaces -exact, and there is a new parameter after the expression, how 
many times the expression is to be evaluated to get the requested statistics. 
However, that is not what is used in this tutorial, which instead is: 

monaco -all sum(sorted3d6) 10000000 

Why? Because what -new does is to make it such that if you repeat a run, you get new random 
numbers and new estimates. But here we want examples that you can repeat and compare. 
Also, if we produce many approximate results then we should replace sorted3d6 with 3d6. 
This creates an unsorted list; for approximate results this saves an unnecessary sorting step. 
However, although statistically equivalent, the approximate results may be slightly different. 
The first output, here using sorted3d6, including reporting the number of results used, is: 

Number of results          = 10000000 
Mean                       = 10.4989 
Standard deviation         = 2.95791 
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Standard deviation of mean = 0.000935373 
95% confidence interval    = [10.497, 10.5007] 
Minimum result             = 3 
Maximum result             = 18 

Instead of an exact mean of 10.5, we now have an estimate of the mean that apparently is 
10.4989. However, that is not how we should quote it. For how to quote it, we look at the two 
new lines of output, and the line that we have ignored up to now, the standard deviation. 
The standard deviation measures the width of a distribution. We can say some things (more 
if we know the distribution) about how many results are within different numbers of standard 
deviations from the mean. The standard deviation is an estimate; the more results we have, 
the closer it will get to its true value, which from our earlier exact results is about 2.95804. 
The mean is also an estimate, and also has a standard deviation. But as the number of results 
gets larger, the mean varies less, getting closer to its true value. This is shown in the new line 
of output, the standard deviation of [the] mean. That goes down as the square root of the 
number of results: to make it ten times smaller you need a hundred times as many results. 
We do not, in general, know enough about the distribution of the results to use the standard 
deviation very usefully. (Sometimes we might, so it is there for those cases.) But for large 
numbers of results the mean tends towards a known distribution, the one called a normal 
distribution. Knowing that, and that ten million is more than large enough, we can do more. 
In particular, the program can estimate a confidence interval that the true mean should lie in 
about 95% of the time, and that confidence interval is shown. Why 95% rather than, say, 99%? 
There is no particularly good reason, it is just the most commonly used value. 
However, it is easy to misinterpret the confidence interval. Although (about, because this is an 
estimate) 95% of the time the mean will be in the confidence interval, this is not the same as 
saying that there is a 95% chance that the mean is in any given confidence interval that the 
program produces, but explaining why that is so is beyond the scope of this tutorial. 
Instead, less precisely, we just use the interval as a guide to quote the mean to an appropriate 
precision. From those results we can quote the mean as “about 10.50”. Why? Because the 
next values to that precision, 10.49 and 10.51, are both (well) outside that confidence interval. 
What about the more precise (although, in this case, less accurate) possible next estimate of 
“about 10.499”? The next values to that precision are 10.498 and 10.500, which are both 
inside the confidence interval. So quoting the mean as about 10.499 would be over-precise. 
This is not rigorous, because the interval makes no definite promises, and sometimes we have 
to make a judgement call when numbers are just inside or outside the interval. But it is better 
than quoting over-precise figures. We thus always quote estimated figures with an “about”. 
The mean is not the only output with a confidence interval. The second output from -all is: 

 3 -   46637 ~ 0.0046637  [0.00462166, 0.00470612] 
 4 -  138764 ~ 0.0138764  [0.0138041, 0.0139491] 
 5 -  277086 ~ 0.0277086  [0.0276071, 0.0278105] 
 6 -  463492 ~ 0.0463492  [0.0462191, 0.0464797] 
 7 -  695550 ~ 0.069555   [0.0693975, 0.0697128] 
 8 -  972369 ~ 0.0972369  [0.0970534, 0.0974207] 
 9 - 1156903 ~ 0.11569    [0.115492, 0.115889] 
10 - 1251252 ~ 0.125125   [0.12492, 0.12533] 
11 - 1249253 ~ 0.124925   [0.124721, 0.12513] 
12 - 1158734 ~ 0.115873   [0.115675, 0.116072] 
13 -  970634 ~ 0.0970634  [0.0968801, 0.097247] 
14 -  694195 ~ 0.0694195  [0.0692621, 0.0695772] 
15 -  462408 ~ 0.0462408  [0.0461108, 0.0463711] 
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16 -  277349 ~ 0.0277349  [0.0276333, 0.0278369] 
17 -  138981 ~ 0.0138981  [0.0138257, 0.0139708] 
18 -   46393 ~ 0.0046393  [0.00459737, 0.00468161] 

We should now quote the probability of a 3 as “about 0.0047” and of an 18 as “about 0.0046”, 
as in the values 0.0046 and 0.0048 in the first case and 0.0045 and 0.0047 in the second case 
are outside the reported intervals. However, we definitely need the “about” in each case, as 
by symmetry those two probabilities must be equal, hence one of them must be slightly 
inaccurate. (In this case we know from the exact result of about 0.00462963 – which is in both 
confidence intervals – that the true answer to the appropriate precision is about 0.0046.) 
Note that -table output has no confidence intervals, so we prefer to use -all in this case. 

Approximate Indefinite Loop 
We previously noted that the following expression looked like it ought to work, but did not: 

while(r0<10&r1<10,r0+=d3+1;r1+=d3+1);r0-r1 

Now, for approximate results, it does. The second output from -all for ten million results is 
as follows. Comparing it with the exact results, one of the 13 exact probabilities is slightly 
outside the estimated confidence interval and one is on the edge. This is not surprising. 

-6 -   13746 ~ 0.0013746  [0.00135183, 0.00139776] 
-5 -   93475 ~ 0.0093475  [0.00928805, 0.00940733] 
-4 -  350436 ~ 0.0350436  [0.0349298, 0.0351578] 
-3 -  801800 ~ 0.08018    [0.0800118, 0.0803485] 
-2 - 1349852 ~ 0.134985   [0.134774, 0.135197] 
-1 - 1633447 ~ 0.163345   [0.163116, 0.163574] 
 0 - 1516919 ~ 0.151692   [0.15147, 0.151914] 
 1 - 1634008 ~ 0.163401   [0.163172, 0.16363] 
 2 - 1349791 ~ 0.134979   [0.134767, 0.135191] 
 3 -  799178 ~ 0.0799178  [0.0797499, 0.080086] 
 4 -  350986 ~ 0.0350986  [0.0349847, 0.0352128] 
 5 -   92642 ~ 0.0092642  [0.00920501, 0.00932377] 
 6 -   13720 ~ 0.001372   [0.00134925, 0.00139513] 

Approximation Required 
We cannot produce exact results when the number of random numbers needed is unbounded. 
Sometimes we can get good estimates using exact results by capping the number of random 
numbers. However, an example where that fails is to roll and sum a standard die until we roll 
a 6, when we stop, not including the 6 in the sum. That sum’s mean can be shown to be 15. 
A suitable expression is while(r0:=d6;r0<6,r1+=r0), with a -statistics output: 

Number of results          = 10000000 
Mean                       = 15.0031 
Standard deviation         = 16.741 
Standard deviation of mean = 0.00529396 
95% confidence interval    = [14.9927, 15.0135] 
Minimum result             = 0 
Maximum result             = 266 

If instead we use exact results capping the number of rolls at 12, the expression can become: 

pool_nset12of6;while(r2+=1;(r2<12)&(r0:=pool_d(6);r0<6),r1+=r0) 
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The -statistics output for this example – which is not fast, even with the cap – is: 

Number of evaluations      = 61035156 
Number of results          = 2176782336 
Mean                       = 12.9812 = 1569844655/120932352 
Standard deviation         = 11.631 
Minimum result             = 0 
Maximum result             = 55 

This is the exact result for the capped case but is a bad estimate for the uncapped case, so in 
this case we need to approximate. (To tell that, adjust the cap and see how the mean varies.) 
We also need to approximate when the problem is bounded but too big. This applies to some 
examples using bridge hands. But for a simple example, we roll a large number of standard 
dice and count 6s. Rolling 24 dice uses count_eq(sorted24d6,6), with exact output: 

Number of evaluations      = 118755 
Number of results          = 4738381338321616896 
Mean                       = 4 
Standard deviation         = 1.82574 
Minimum result             = 0 
Maximum result             = 24 

This is practical. However, the usual version of the program cannot handle 25 dice and reports 
a failure. But an approximate run is possible, and produces the ten million result output: 

Number of results          = 10000000 
Mean                       = 4.16679 
Standard deviation         = 1.86334 
Standard deviation of mean = 0.000589238 
95% confidence interval    = [4.16563, 4.16794] 
Minimum result             = 0 
Maximum result             = 16 

The reported maximum result 16 is the most 6s that were seen. Results up to 25 are possible, 
but need more results to become likely (a result >16 has probability about 1.6×10-8). The mean 
estimate of about 4.167 (with some doubt about the 7) is close to the true figure of 4⅙	or about 
4.16667. Using approximate results we can roll many more dice than the 25 in this example. 

Conclusions 
The aim of this tutorial is to provide a maximum “bang for the buck” in describing only some 
features of the program, but chosen to be enough to enable you to answer many questions. 
This tutorial has emphasised using the program to give exact answers. It has presented more 
examples using dice than using cards, largely because dice are easier to get started with. 
There are two more tutorials that follow this one, and a much longer main document that 
describes the program in full detail (some of which is simplified here). There are also some 
documents that solve many of the problems in some available collections. Most use new 
features of the program, but some of them could be solved using just what is in this tutorial. 
If you have any feedback about this tutorial or any other aspect of the program, please let me 
know. If you have a problem, let me have a complete description of it and I will try to help. 
The program Monaco (current version 2.49) and all associated documentation, including this 
tutorial document, are copyright Christopher Dearlove, christopher.dearlove@gmail.com, 
2008-2026, all rights reserved. See also http://www.mnemosyne.uk/monaco/. 


